Showing posts with label flywheel. Show all posts
Showing posts with label flywheel. Show all posts

Saturday, 19 October 2013

Flywheel Energy Storage

Flywheel energy storage systems store kinetic energy (i.e. energy produced by motion) by constantly spinning a compact rotor in a low-friction environment. When short-term back-up power is required (i.e. when utility power fluctuates or is lost), the rotor's inertia allows it to continue spinning and the resulting kinetic energy is converted to electricity.

Active Power's CleanSource® Flywheel Technology, as shown below, integrates the function of a motor, flywheel rotor and generator into a single integrated system. The motor, which uses electric current from the utility grid to provide energy to rotate the flywheel, spins constantly to maintain a ready source of kinetic energy. The generator then converts the kinetic energy of the flywheel into electricity. This integration of functionality reduces the cost and increases product efficiency. 

            A flywheel, in essence is a mechanical battery - simply a mass rotating about an axis. Flywheels store energy mechanically in the form of kinetic energy. They take an electrical input to accelerate the rotor up to speed by using the built-in motor, and return the electrical energy by using this same motor as a generator. Flywheels are one of the oldest and most common mechanical devises in existence. They may still prove to serve us as an important component on tomorrow's vehicles and future energy needs. Flywheels are one of the most promising technologies for replacing conventional lead acid batteries as energy storage systems for a variety of applications, including automobiles, economical rural electrification systems, and stand-alone, remote power units commonly used in the telecommunications industry. Recent advances in the mechanical properties of composites has rekindled interest in using the inertia of a spinning wheel to store energy.